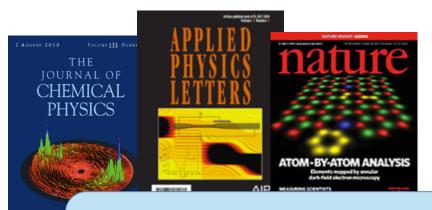
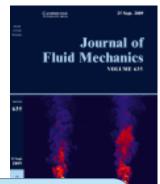

NERSC-8 Market Survey

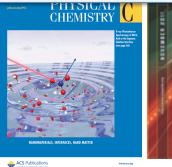
Katie Antypas NERSC-8 Project Lead

November 15, 2012

We are starting our next procurement, NERSC-8, with a round of market surveys


- Seek vendor input to optimize timing, requirements and business practices
- Opportunity for vendors to provide input prior to formal procurement process


NERSC's mission is to enable science



NERSC Mission: To accelerate the pace of scientific discovery by providing high-performance computing, data systems and services to the DOE Office of Science community.

NERSC has over 4500 users in 650 projects that produce about **1500 publications per year!**

Science

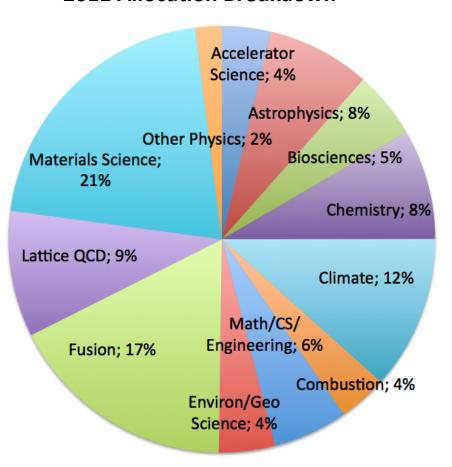
Vendor Briefing

NERSC's Long Term Strategy

- New system every ~3 years, run for 5-6 years
 - Maximizes stability rather than peak / machine
 - Single system for DOE/SC HPC workload (minimize TCO)
 - Testbeds, e.g., GPU cluster, for technology exploration / users
- NERSC-5 decommissioned May 1, 2012
 - Franklin 25 TF on applications, 356 TF peak
- NERSC-6 installed in phases, 2009-2011
 - Hopper is 144 TF on applications; 1.3 PF peak
- NERSC-7
 - Cray Cascade system; 236 TF on applications; > 2PF peak
 - 2 phased system, installed 2013
- NERSC-8 planned for 2015/2016
- Plan to reach Exascale in next 10 years

NERSC-8 Design Targets and Limitations

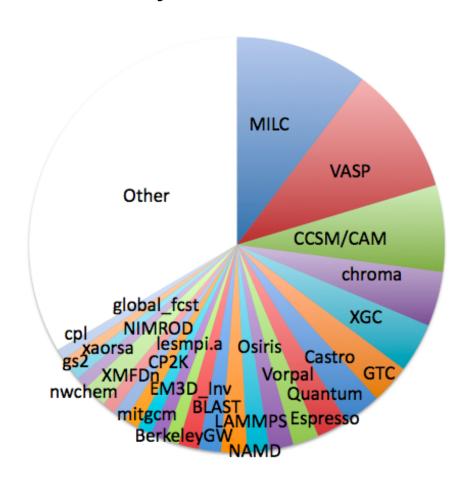
- 10-30x application performance of Hopper XE6 system as measured by SSP metric (Hopper 1.3 PFs peak)
- Transition DOE users to more energy efficient manycore architectures
- Support Office of Science workload
- Delivery 2015/2016
- Maximum power 6MW
- More specifications in draft RFP release expected Dec. 2013



NERSC supports a broad range of science applications

2011 Allocation Breakdown

- Over 4500 users
- Over 650 projects
- Hundreds of users logged in each day
- ~1500 publications per year


Challenge is to procure a system that satisfies our diverse workload while preparing users for more energy-efficient future architectures

Although NERSC has a broad user base, the workload is highly concentrated and unevenly distributed Nersc

Breakdown of NERSC Workload

- Two-thirds of NERSC workload is concentrated in ~25 application codes
- While porting applications to any new architecture will be challenging, concentration of applications, makes task less daunting.

Approximate NERSC-8 timeline

Mission Need approval Q3 2012

- RFP release ~Q2 2013
- Vendor selection and negotiations ~Q3/Q4 2013
- Delivery late 2015/early 2016

The ACES Trinity team and the NERSC-8 team are collaborating

- Teams worked together on Hopper/Cielo and found interactions useful
- Strengthen alliance between SC/NNSA on road to exascale
- Share technical expertise between Labs

Plans are for a joint Trinity/NERSC-8 RFP calling for two distinct systems of similar technology with the <u>intention</u> to award both systems to the same vendor.

Current NERSC Systems

Large-Scale Computing Systems

Hopper (NERSC-6): Cray XE6

- 6,384 compute nodes, 153,216 cores
- 144 Tflop/s on applications; 1.3 Pflop/s peak

Edison (NERSC-7): Cray XC30 (Cascade)

- Arrives in 2 phases Dec 2012 with full system Q2 2013
- 236 Tflop/s on applications; > 2 Pflop/s peak

Midrange

140 Tflops total

Carver

- IBM iDataplex cluster
- 9884 cores; 106TF

PDSF (HEP/NP)

~1K core cluster

GenePool (JGI)

- ~5K core cluster
- 2.1 PB Isilon File System

NERSC Global Filesystem (NGF)

Uses IBM's GPFS

- 8.5 PB capacity
- 15GB/s of bandwidth

HPSS Archival Storage

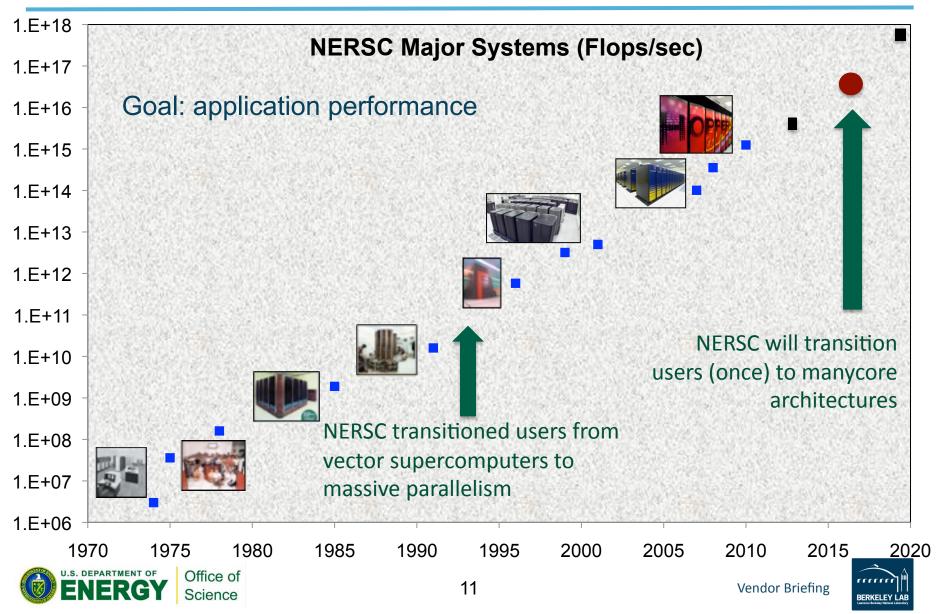
- 240 PB capacity
- 5 Tape libraries
- 200 TB disk cache

Analytics & Testbeds

Euclid

(512 GB shared memory)

Dirac 48 Fermi GPU nodes

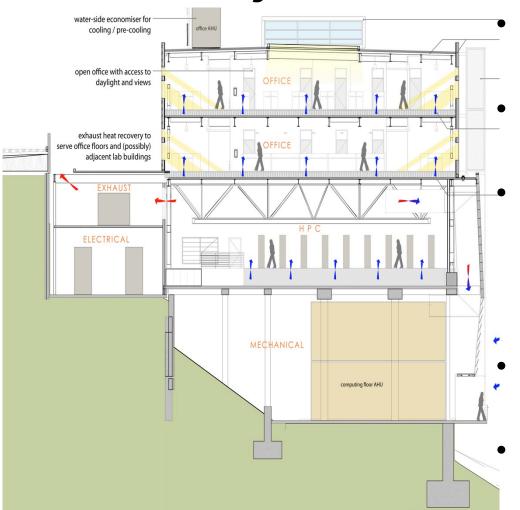

Magellan Hadoop

NERSC plan will take scientists through technology transition

NERSC-8 will be housed in the new CRT facility on the main LBL campus

Four story, 140,000 GSF

- Two 20k SF office floors, 300 offices
- 28k SF HPC floor
- Mechanical floor
- Occupancy Fall 2014
- 12.5 MW power
- System plans
 - N6 (Hopper) remains at OSF
 - N7 installed at OSF → CRT
 - N8 installed in CRT



Berkeley's climate along with the CRT design enable an extremely energy efficient building

Building Section

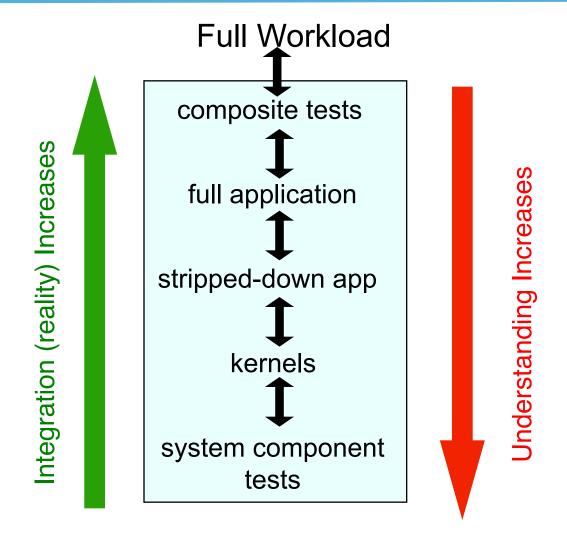
Power Usage Effectiveness (PUE): 1.1

Air cooling with 75F degree air year round without chillers

Liquid cooling

- 74F degree water year round without chillers
- 65F degree water using chillers for
 560 hours/year (6%)

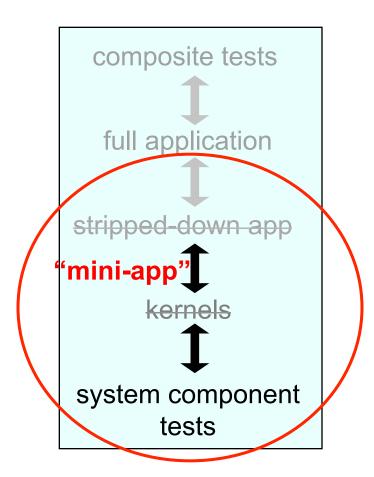
Computer room exhaust heat used to warm office floors


LEED Gold

In the past NERSC has released benchmarks of various levels of complexity with the RFP

Current technology landscape makes benchmark packaging and selection challenging

- Variety of chip architectures (CPU, GPU, MIC)
- Uncertain programming model (MPI, OpenMP, OpenACC, CUDA, CILK)
- Limited staff to assemble benchmarks, infeasible to release benchmarks compatible for all programming models
- Cognizant of effort required by vendors to run benchmarks
- Collaboration with Trinity means we must find overlap in benchmark selection



NERSC-8/Trinity plan to use "mini-apps" and micro-benchmarks for system evaluation

- Releasing full benchmarks for all architectures and programming models infeasible
- Plan is to release mini-apps with MPI+OpenMP
- Full applications and NERSC SSP will remain a part of our acceptance testing

Benchmarks are critical part of the NERSC-8 procurement

- Distinguish performance of systems
- Compare price and performance metrics such as Flops/\$ and Flops/Watt
- Represent scientific workload on system
- Give confidence that chosen system will perform well for NERSC workload
- Used throughout lifetime of the system

Proposed NERSC-8/Trinity MiniApp Benchmarks

MiniApp	Descirption
miniFE	Unstructured implicit finite element
miniGhost	Finite difference stencil
miniContact	Contact search
AMG	Algebraic Mult-Grid linear system solver for unstructured mesh physics packages
UMT	Unstructured-Mesh deterministic radiation Transport
miniPartisn	Structured Particle Transport Surrogate
miniDFT	Density Functional Theory (DFT)
GTC	Particle-in-cell magnetic fusion
MILC	Lattice Quantum Chromodynamics (QCD). Sparse matrix inversion, CG

Note: this list is not final and could change before final RFP release

Other Important Criteria

- Focus on performance for real applications
- Energy efficiency
- Application portability
- Ease of programming
- Scalable interconnect
- System resilience and reliability
- Active power management
- System facility integration
- System software, management software
- Support model for systems

